Fast vision in the dark: A case for single-photon imaging in planetary navigation.

Loading...
Thumbnail Image

Identifiers

Publication date

Reading date

Collaborators

Advisors

Tutors

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Metrics

Google Scholar

Share

Research Projects

Organizational Units

Journal Issue

Abstract

Improving robotic navigation is critical for extending exploration range and enhancing operational efficiency. Vision-based navigation relying on traditional CCD or CMOS cameras faces major challenges when complex illumination conditions are paired with motion, limiting the range and accessibility of mobile planetary robots. In this study, we propose a novel approach to planetary navigation that leverages the unique imaging capabilities of Single-Photon Avalanche Diode (SPAD) cameras. We present the first comprehensive evaluation of single-photon imaging as an alternative passive sensing technology for robotic exploration missions targeting perceptually challenging locations, with a special emphasis on high-latitude lunar regions. We detail the operating principles and performance characteristics of SPAD cameras, assess their advantages and limitations in addressing key perception challenges of upcoming exploration missions to the Moon, and benchmark their performance under representative illumination conditions.

Description

Bibliographic citation

Endorsement

Review

Supplemented By

Referenced by

Creative Commons license

Except where otherwised noted, this item's license is described as Atribución 4.0 Internacional