A study of the influence of the sensor sampling frequency on the performance of wearable fall detectors
Loading...
Identifiers
Publication date
Reading date
Collaborators
Advisors
Tutors
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Share
Department/Institute
Keywords
Abstract
Last decade has witnessed a major research interest on wearable fall detection systems. Sampling rate in these detectors strongly affects the power consumption and required complexity of the employed wearables. This study investigates the effect of the sampling frequency on the efficacy of the detection process. For this purpose, we train a convolutional neural network to directly discriminate falls from conventional activities based on the raw acceleration signals captured by a transportable sensor. Then, we analyze the changes in the performance of this classifier when the sampling rate is progressively reduced. In contrast with previous studies, the detector is tested against a wide set of public repositories of benchmarking traces. The quality metrics achieved for the different frequencies and the analysis of the spectrum of the signals reveal that a sampling rate of 20 Hz can be enough to maximize the effectiveness of a fall detector.
Description
Bibliographic citation
Antonio Santoyo-Ramón, J., Casilari, E., & Manuel Cano-García, J. (2022). A study of the influence of the sensor sampling frequency on the performance of wearable fall detectors. Measurement, 193, 110945. https://doi.org/10.1016/j.measurement.2022.110945
Collections
Endorsement
Review
Supplemented By
Referenced by
Creative Commons license
Except where otherwised noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional










