Challenges in Reservoir Computing.

dc.centroEscuela de Ingenierías Industrialeses_ES
dc.contributor.authorAtencia-Ruiz, Miguel Alejandro
dc.date.accessioned2024-04-08T06:26:45Z
dc.date.available2024-04-08T06:26:45Z
dc.date.issued2024
dc.departamentoMatemática Aplicada
dc.description.abstractIn this expository talk, we will review the Echo State Network (ESN), a recurrent neural network that has achieved good results in time series tasks, such as forecasting, classification, and encoding-decoding. However, the lack of a rigorous mathematical foundation makes difficult their application in a general context. On the one hand, strong theoretical results, such as the Echo State Property and Universal Approximation, are non-constructive and require critical simplifying assumptions. On the other hand, usual heuristics for optimal hyper-parameter selection have turned out to be neither necessary nor sufficient. Some connections of ESN models with ideas from dynamical systems and ergodicity will be exposed, together with recent design proposals, as well as a novel application to time series clustering.es_ES
dc.description.sponsorshipUniversidad de Málaga CEREMADE, Université Paris-Dauphine Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech.es_ES
dc.identifier.urihttps://hdl.handle.net/10630/30923
dc.language.isoenges_ES
dc.relation.eventdate4/4/2024es_ES
dc.relation.eventplaceParis, Franciaes_ES
dc.relation.eventtitleGroupe de travail PDE-AI. CEREMADE, Université Paris-Dauphinees_ES
dc.rights.accessRightsopen accesses_ES
dc.subjectRedes neuronales (Informática)es_ES
dc.subjectSistemas autoorganizativoses_ES
dc.subject.otherEcho State Networkses_ES
dc.subject.otherMachine Learninges_ES
dc.subject.otherDynamical Systemses_ES
dc.titleChallenges in Reservoir Computing.es_ES
dc.typeconference outputes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication95963a23-8000-45d2-82c7-31a690f38a5b
relation.isAuthorOfPublication.latestForDiscovery95963a23-8000-45d2-82c7-31a690f38a5b

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Abstract_Dauphine_Talk.pdf
Size:
36.96 KB
Format:
Adobe Portable Document Format
Description: