Addressing significant challenges for animal detection in camera trap images: a novel deep learning-based approach.

dc.centroFacultad de Cienciases_ES
dc.contributor.authorMulero-Pázmány, Margarita Cristina
dc.contributor.authorHurtado-Requena, Sandro José
dc.contributor.authorBarba-González, Cristóbal
dc.contributor.authorAntequera-Gómez, María Luisa
dc.contributor.authorDíaz-Ruiz, Francisco
dc.contributor.authorReal-Giménez, Raimundo
dc.contributor.authorNavas-Delgado, Ismael
dc.contributor.authorAldana-Montes, José Francisco
dc.date.accessioned2025-05-13T09:53:37Z
dc.date.available2025-05-13T09:53:37Z
dc.date.issued2025-05-09
dc.departamentoBiología Animales_ES
dc.description.abstractWildlife biologists increasingly use camera traps for monitoring animal populations. However, manually sifting through the collected images is expensive and time-consuming. Current deep learning studies for camera trap images do not adequately tackle real-world challenges such as imbalances between animal and empty images, distinguishing similar species, and the impact of backgrounds on species identification, limiting the models’ applicability in new locations. Here, we present a novel two-stage deep learning framework. First, we train a global deep-learning model using all animal species in the dataset. Then, an agglomerative clustering algorithm groups animals based on their appearance. Subsequently, we train a specialized deep-learning expert model for each animal group to detect similar features. This approach leverages Transfer Learning from the MegaDetectorV5 (YOLOv5 version) model, already pre-trained on various animal species and ecosystems. Our two-stage deep learning pipeline uses the global model to redirect images to the appropriate expert models for final classification. We validated this strategy using 1.3 million images from 91 camera traps encompassing 24 mammal species and used 120,000 images for testing, achieving an F1-Score of 96.2% using expert models for final classification. This method surpasses existing deep learning models, demonstrating improved precision and effectiveness in automated wildlife detection.es_ES
dc.identifier.citationMulero-Pázmány, M., Hurtado, S., Barba-González, C. et al. Addressing significant challenges for animal detection in camera trap images: a novel deep learning-based approach. Scientific Reports 15, 16191 (2025). https://doi.org/10.1038/s41598-025-90249-zes_ES
dc.identifier.doi10.1038/s41598-025-90249-z
dc.identifier.urihttps://hdl.handle.net/10630/38576
dc.language.isoenges_ES
dc.publisherSpringer-Naturees_ES
dc.rightsAttribution-NoDerivatives 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/*
dc.subjectAnimales - Identificaciónes_ES
dc.subjectInnovaciones tecnológicases_ES
dc.subject.otherCamera trapses_ES
dc.subject.otherDeep learninges_ES
dc.subject.otherAnimal identificationes_ES
dc.subject.otherYOLOes_ES
dc.titleAddressing significant challenges for animal detection in camera trap images: a novel deep learning-based approach.es_ES
dc.typejournal articlees_ES
dc.type.hasVersionVoRes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication7edba7f8-0dbe-48b9-b16c-8cfde49a9a1b
relation.isAuthorOfPublicatione8971462-20b8-442f-aeea-797c6233b905
relation.isAuthorOfPublication9779d41e-c7c7-493f-a39c-9aee48cba2d7
relation.isAuthorOfPublication4e298ef9-8825-4aa8-be87-ac0f8adbf1b7
relation.isAuthorOfPublication7eac9d6a-0152-4268-8207-ea058c82e531
relation.isAuthorOfPublication.latestForDiscovery7edba7f8-0dbe-48b9-b16c-8cfde49a9a1b

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2025-Scientific_Reports.pdf
Size:
3.8 MB
Format:
Adobe Portable Document Format
Description:

Collections