Enhancing Perception with Tactile Object Recognition in Adaptive Grippers for Human–Robot Interaction.

dc.centroEscuela de Ingenierías Industrialeses_ES
dc.contributor.authorGandarias Palacios, Juan Manuel
dc.contributor.authorGómez-de-Gabriel, Jesús Manuel
dc.contributor.authorGarcía-Cerezo, Alfonso José
dc.date.accessioned2024-09-30T10:39:18Z
dc.date.available2024-09-30T10:39:18Z
dc.date.issued2018-02-26
dc.departamentoIngeniería de Sistemas y Automática
dc.description.abstractThe use of tactile perception can help first response robotic teams in disaster scenarios, where visibility conditions are often reduced due to the presence of dust, mud, or smoke, distinguishing human limbs from other objects with similar shapes. Here, the integration of the tactile sensor in adaptive grippers is evaluated, measuring the performance of an object recognition task based on deep convolutional neural networks (DCNNs) using a flexible sensor mounted in adaptive grippers. A total of 15 classes with 50 tactile images each were trained, including human body parts and common environment objects, in semi-rigid and flexible adaptive grippers based on the fin ray effect. The classifier was compared against the rigid configuration and a support vector machine classifier (SVM). Finally, a two-level output network has been proposed to provide both object-type recognition and human/non-human classification. Sensors in adaptive grippers have a higher number of non-null tactels (up to 37% more), with a lower mean of pressure values (up to 72% less) than when using a rigid sensor, with a softer grip, which is needed in physical human–robot interaction (pHRI). A semi-rigid implementation with 95.13% object recognition rate was chosen, even though the human/non-human classification had better results (98.78%) with a rigid sensor.es_ES
dc.identifier.citationGandarias, J.M.; Gómez-de-Gabriel, J.M.; García-Cerezo, A.J. Enhancing Perception with Tactile Object Recognition in Adaptive Grippers for Human–Robot Interaction. Sensors 2018, 18, 692. https://doi.org/10.3390/s18030692es_ES
dc.identifier.doi10.3390/s18030692
dc.identifier.urihttps://hdl.handle.net/10630/34013
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAttribution 4.0 Internacional
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectSistemas hombre-máquinaes_ES
dc.subjectDetectoreses_ES
dc.subjectVisión artificial (Robótica)es_ES
dc.subject.otherAdaptive gripperes_ES
dc.subject.otherTactile sensorses_ES
dc.subject.otherHuman-robot interactiones_ES
dc.subject.otherObject recognitiones_ES
dc.titleEnhancing Perception with Tactile Object Recognition in Adaptive Grippers for Human–Robot Interaction.es_ES
dc.typejournal articlees_ES
dc.type.hasVersionVoRes_ES
dspace.entity.typePublication
relation.isAuthorOfPublicatione12aaab5-66be-4d72-bd9c-36dc69c1f4cf
relation.isAuthorOfPublication111d26c1-efd3-4b8a-a05b-420a796580e0
relation.isAuthorOfPublication.latestForDiscoverye12aaab5-66be-4d72-bd9c-36dc69c1f4cf

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
J_2018_Sensors_Enhancing.pdf
Size:
22.11 MB
Format:
Adobe Portable Document Format
Description:
Artículo
Download

Description: Artículo

Collections