Evaluation of a Fall Alerting System based on a Convolutional Deep Neural Network
| dc.centro | E.T.S.I. Telecomunicación | en_US |
| dc.contributor.author | Casilari-Pérez, Eduardo | |
| dc.contributor.author | Lora Rivera, Raúl | |
| dc.contributor.author | García-Lagos, Francisco | |
| dc.date.accessioned | 2019-03-04T07:34:14Z | |
| dc.date.available | 2019-03-04T07:34:14Z | |
| dc.date.issued | 2019-03-04 | |
| dc.departamento | Tecnología Electrónica | |
| dc.description | Artículo sobre detección de caídas con redes neuronales profundas | en_US |
| dc.description.abstract | Owing to the effects of falls on quality of life of the elderly, automatic fall detection systems (FDS) have become a key research topic in the ambit of telecare. This works assesses the performance of convolutional neural networks when they are applied to identify fall accidents in a wearable FDS provided with a tri-axial accelerometer. The evaluation of the detection algorithm is carried out by employing a benchmarking repository with a wide set of traces captured from a wide group of volunteers that executed a programmed series of Activities of the Daily Living (ADLs) and emulated falls. Results show that the CNN can properly distinguish both types of movements with a success rate (specificity and sensitivity) around 99%. | en_US |
| dc.description.sponsorship | Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. | en_US |
| dc.identifier.uri | https://hdl.handle.net/10630/17400 | |
| dc.language.iso | eng | en_US |
| dc.relation.eventdate | 23 de abril de 2019 | en_US |
| dc.relation.eventplace | París, Francia | en_US |
| dc.relation.eventtitle | 6th International Conference on Control, Decision and Information Technologies (CODIT 2019) | en_US |
| dc.rights.accessRights | open access | en_US |
| dc.subject | Redes Neuronales (Informática) | en_US |
| dc.subject.other | Fall detection systems | en_US |
| dc.subject.other | Wearable | en_US |
| dc.subject.other | Accelerometers | en_US |
| dc.title | Evaluation of a Fall Alerting System based on a Convolutional Deep Neural Network | en_US |
| dc.type | conference output | en_US |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | b00113ce-90f4-46b3-a2ba-507489e804c7 | |
| relation.isAuthorOfPublication | 7c037c2a-75ca-4e26-abf5-325bbd186b71 | |
| relation.isAuthorOfPublication.latestForDiscovery | b00113ce-90f4-46b3-a2ba-507489e804c7 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- CODIT_WIP_ECasilari_RIUMA.pdf
- Size:
- 277.81 KB
- Format:
- Adobe Portable Document Format
- Description:
- Fichero con el resumen de la ponencia
Description: Fichero con el resumen de la ponencia

