Kinetic study of methanol dehydration over Zro2 supported-activated carbons

Loading...
Thumbnail Image

Files

T07_Palomo.pdf (177.12 KB)

Description: Extended abstract

Identifiers

Publication date

Reading date

Collaborators

Advisors

Tutors

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Metrics

Google Scholar

Share

Research Projects

Organizational Units

Journal Issue

Department/Institute

Abstract

The growing concerns about climate change and energy consumption have been the driving force in seek of alternative fuels such as DME, mainly produced via methanol dehydration over a solid acid catalyst. The use of activated carbons for this aim has been little studied up to date. Only a few studies can be found in the literature, reporting all of them materials with a low thermal stability of the acid surface groups, which results into a fast deactivation of the catalyst. In this work, the preparation of activated carbons via chemical activation with phosphoric acid, their modification with different ZrO2 loads, and their application as methanol dehydration catalysts have been studied. The catalytic results showed that the best methanol conversion and selectivity towards DME were achieved with the activated carbon prepared with an impregnation mass ratio value (H3PO4 /precursor) of 2 and an activation temperature of 800 ºC, loaded with a 7 % (wt) of ZrO2 . This catalyst exhibits high steady state methanol conversion values even at temperatures as high as 400 ºC (XCH3OH= 80%, 0.1 g·s/μmol, PCH3OH= 0.08 atm in helium), keeping a selectivity to DME higher than 96%. The effect of oxygen in the reaction atmosphere was also analysed. In this sense, an increase of 15 % in the DME yield was obtained when using air instead of helium as reaction atmosphere (350 ºC, 0.1 g·s/μmol, PCH3OH= 0.04 atm). A kinetic study has been carried out on this catalyst in which two mechanisms (Eley Rideal and Langmuir Hinshelwood) for methanol dehydration have been analysed. The models proposed also consider the presence of oxygen in the reaction media.

Description

Bibliographic citation

Endorsement

Review

Supplemented By

Referenced by