Waypoint generation in satellite images based on a CNN for outdoor UGV navigation
| dc.centro | Escuela de Ingenierías Industriales | es_ES |
| dc.contributor.author | Sánchez-Montero, Manuel | |
| dc.contributor.author | Morales-Rodríguez, Jesús | |
| dc.contributor.author | Martínez-Rodríguez, Jorge Luis | |
| dc.date.accessioned | 2024-01-31T09:03:10Z | |
| dc.date.available | 2024-01-31T09:03:10Z | |
| dc.date.created | 2024 | |
| dc.date.issued | 2023 | |
| dc.departamento | Ingeniería de Sistemas y Automática | |
| dc.description.abstract | Moving on paths or trails present in natural environments makes autonomous navigation of unmanned ground vehicles (UGV) simpler and safer. In this sense, aerial photographs provide a lot of information of wide areas that can be employed to detect paths for UGV usage. This paper proposes the extraction of paths from a geo-referenced satellite image centered at the current UGV position. Its pixels are individually classified as being part of a path or not using a convolutional neural network (CNN) which has been trained using synthetic data. Then, successive distant waypoints inside the detected paths are generated to achieve a given goal. This processing has been successfully tested on the Andabata mobile robot, which follows the list of waypoints in a reactive way based on a three-dimensional (3D) light detection and ranging (LiDAR) sensor. | es_ES |
| dc.description.sponsorship | Spanish Project PID2021-122944OB-I00 | es_ES |
| dc.identifier.citation | : Sánchez, M.; Morales, J.; Martínez, J.L. Waypoint Generation in Satellite Images Based on a CNN for Outdoor UGV Navigation. Machines 2023, 11, 807. https:// doi.org/10.3390/machines11080807 | es_ES |
| dc.identifier.doi | 10.3390/machines11080807 | |
| dc.identifier.uri | https://hdl.handle.net/10630/29457 | |
| dc.language.iso | eng | es_ES |
| dc.publisher | MDPI | es_ES |
| dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
| dc.rights.accessRights | open access | es_ES |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
| dc.subject | Vehículos autodirigidos | es_ES |
| dc.subject.other | Unmanned ground vehicles | es_ES |
| dc.subject.other | Outdoor navigation | es_ES |
| dc.subject.other | Satellite images | es_ES |
| dc.subject.other | Neural networks | es_ES |
| dc.subject.other | Path detection | es_ES |
| dc.subject.other | Synthetic data | es_ES |
| dc.title | Waypoint generation in satellite images based on a CNN for outdoor UGV navigation | es_ES |
| dc.type | journal article | es_ES |
| dc.type.hasVersion | VoR | es_ES |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | 14fa0e60-c422-48ee-8093-600fb95e788c | |
| relation.isAuthorOfPublication | f7f187bf-2543-410f-8e9e-d920911a5fd1 | |
| relation.isAuthorOfPublication.latestForDiscovery | 14fa0e60-c422-48ee-8093-600fb95e788c |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- machines-11-00807-v2.pdf
- Size:
- 32.98 MB
- Format:
- Adobe Portable Document Format
- Description:

