Diagnosis Based on Genetic Fuzzy Algorithms for LTE Self-Healing.

dc.centroE.T.S.I. Telecomunicaciónes_ES
dc.contributor.authorKhatib, Emil Jatib
dc.contributor.authorBarco-Moreno, Raquel
dc.contributor.authorGómez-Andrades, Ana
dc.contributor.authorSerrano, Inmaculada
dc.date.accessioned2024-10-07T11:10:09Z
dc.date.available2024-10-07T11:10:09Z
dc.date.issued2015
dc.departamentoIngeniería de Comunicaciones
dc.descriptionhttps://v2.sherpa.ac.uk/id/publication/3582es_ES
dc.description.abstractSelf-organizing network (SON) mechanisms reduce operational expenditure in cellular networks while enhancing the offered quality of service. Within a SON, self-healing aims to autonomously solve problems in the radio access network and to minimize their impact on the user. Self-healing comprises automatic fault detection, root cause analysis, fault compensation, and recovery. This paper presents a root cause analysis system based on fuzzy logic. A genetic algorithm is proposed for learning the rule base. The proposed method is adapted to the way of reasoning of troubleshooting experts, which ease knowledge acquisition and system output interpretation. Results show that the obtained results are comparable or even better than those obtained when the troubleshooting experts define the rules, with the clear benefit of not requiring the experts to define the system. In addition, the system is robust, since fine tuning of its parameters is not mandatory.es_ES
dc.identifier.citationE. J. Khatib, R. Barco, A. Gómez-Andrades and I. Serrano, "Diagnosis Based on Genetic Fuzzy Algorithms for LTE Self-Healing," in IEEE Transactions on Vehicular Technology, vol. 65, no. 3, pp. 1639-1651, March 2016, doi: 10.1109/TVT.2015.2414296.es_ES
dc.identifier.doi10.1109/TVT.2015.2414296
dc.identifier.urihttps://hdl.handle.net/10630/34440
dc.language.isoenges_ES
dc.publisherIEEEes_ES
dc.rights.accessRightsopen accesses_ES
dc.subjectAlgoritmos difusoses_ES
dc.subjectLTE (Telecomunicaciones)es_ES
dc.subject.otherFuzzy logices_ES
dc.subject.otherVectorses_ES
dc.subject.otherGenetic algorithmses_ES
dc.subject.otherMobile communicationes_ES
dc.subject.otherMobile computinges_ES
dc.subject.otherFuzzy setses_ES
dc.subject.otherTraininges_ES
dc.subject.otherTroubleshootinges_ES
dc.subject.otherFuzzy systemses_ES
dc.subject.otherGenetic algorithmses_ES
dc.titleDiagnosis Based on Genetic Fuzzy Algorithms for LTE Self-Healing.es_ES
dc.typejournal articlees_ES
dc.type.hasVersionAMes_ES
dspace.entity.typePublication
relation.isAuthorOfPublicationc933e578-ad80-410f-88c2-f0dbdaa6cf72
relation.isAuthorOfPublication.latestForDiscoveryc933e578-ad80-410f-88c2-f0dbdaa6cf72

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
final_version.pdf
Size:
511.42 KB
Format:
Adobe Portable Document Format
Description:

Collections