Automated Detection of Presymptomatic Conditions in Spinocerebellar Ataxia Type 2 Using Monte Carlo Dropout and Deep Neural Network Techniques with Electrooculogram Signals

dc.contributor.authorStoean, Catalin
dc.contributor.authorStoean, Ruxandra
dc.contributor.authorAtencia-Ruiz, Miguel Alejandro
dc.contributor.authorAbdar, Moulud
dc.contributor.authorVelázquez-Pérez, Luis
dc.contributor.authorKhosravi, Abbas
dc.contributor.authorNahavandi, Saeid
dc.contributor.authorAcharya, U. Rajendra
dc.contributor.authorJoya-Caparrós, Gonzalo
dc.date.accessioned2026-01-12T11:17:15Z
dc.date.available2026-01-12T11:17:15Z
dc.date.issued2020-05-27
dc.description.abstractApplication of deep learning (DL) to the field of healthcare is aiding clinicians to make an accurate diagnosis. DL provides reliable results for image processing and sensor interpretation problems most of the time. However, model uncertainty should also be thoroughly quantified. This paper therefore addresses the employment of Monte Carlo dropout within the DL structure to automatically discriminate presymptomatic signs of spinocerebellar ataxia type 2 in saccadic samples obtained from electrooculograms. The current work goes beyond the common incorporation of this special type of dropout into deep neural networks and uses the uncertainty derived from the validation samples to construct a decision tree at the register level of the patients. The decision tree built from the uncertainty estimates obtained a classification accuracy of 81.18% in automatically discriminating control, presymptomatic and sick classes. This paper proposes a novel method to address both uncertainty quantification and explainability to develop reliable healthcare support systems.es_ES
dc.description.sponsorshipMinisterio de Ciencia e Innovación. Plan Estatal de Investigación Científica y Técnica y de Innovaciónes_ES
dc.identifier.citationStoean, C., Stoean, R., Atencia, M., Abdar, M., Velázquez-Pérez, L., Khosravi, A., Nahavandi, S., Acharya, U. R., & Joya, G. (2020). Automated Detection of Presymptomatic Conditions in Spinocerebellar Ataxia Type 2 Using Monte Carlo Dropout and Deep Neural Network Techniques with Electrooculogram Signals. Sensors, 20(11), 3032es_ES
dc.identifier.doi10.3390/s20113032
dc.identifier.urihttps://hdl.handle.net/10630/41429
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectElectrofisiologíaes_ES
dc.subjectAprendizaje automático (Inteligencia artificial)es_ES
dc.subjectMontecarlo, Método dees_ES
dc.subjectInformática médicaes_ES
dc.subject.otherDeep Learninges_ES
dc.subject.otherSensor dataes_ES
dc.subject.otherElectrooculogrames_ES
dc.subject.otherUncertainty quantificationes_ES
dc.subject.otherMonte Carlo dropoutes_ES
dc.subject.otherDecision treeses_ES
dc.titleAutomated Detection of Presymptomatic Conditions in Spinocerebellar Ataxia Type 2 Using Monte Carlo Dropout and Deep Neural Network Techniques with Electrooculogram Signalses_ES
dc.typejournal articlees_ES
dc.type.hasVersionVoRes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication95963a23-8000-45d2-82c7-31a690f38a5b
relation.isAuthorOfPublication39cdaa1a-9f58-44de-a638-781ee086cd05
relation.isAuthorOfPublication.latestForDiscovery95963a23-8000-45d2-82c7-31a690f38a5b

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
sensors-20-03032-v2.pdf
Size:
651.9 KB
Format:
Adobe Portable Document Format
Description:

Collections