On the centroid of a Leavitt path algebra.

dc.contributor.authorGonçalves, Daniel
dc.contributor.authorMartín-Barquero, Dolores
dc.contributor.authorMartín-González, Cándido
dc.contributor.authorSiles-Molina, Mercedes
dc.date.accessioned2025-06-20T07:55:17Z
dc.date.available2025-06-20T07:55:17Z
dc.date.issued2025-06-19
dc.departamentoÁlgebra, Geometría y Topologíaes_ES
dc.description.abstractWe describe the centroid of some Leavitt path algebras. More precisely, for Leavitt path algebras over a field K, we show that if the algebra is simple, then its centroid is isomorphic to K, and if the algebra is prime, then its centroid is also isomorphic to K, except if the graph is a row-finite comet, in which case the centroid is isomorphic to K[x, x−1].es_ES
dc.description.sponsorshipFunding for open access charge: Universidad de Málaga / CBUAes_ES
dc.identifier.citationGonçalves, D., Barquero, D.M., González, C.M. et al. On the centroid of a Leavitt path algebra. J Algebr Comb 61, 48 (2025).es_ES
dc.identifier.doi10.1007/s10801-025-01414-6
dc.identifier.issn0925-9899
dc.identifier.urihttps://hdl.handle.net/10630/39080
dc.language.isoenges_ES
dc.publisherSpringer Naturees_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectCentro de masaes_ES
dc.subjectAlgebraes_ES
dc.subjectGrafos, Teoría dees_ES
dc.subject.otherLeavitt path algebraes_ES
dc.subject.otherCentroides_ES
dc.subject.otherPrime algebraes_ES
dc.titleOn the centroid of a Leavitt path algebra.es_ES
dc.typejournal articlees_ES
dc.type.hasVersionVoRes_ES
dspace.entity.typePublication
relation.isAuthorOfPublicatione714bba7-73e7-4248-80f3-4eb6eb6179ab
relation.isAuthorOfPublication6a556eed-a484-49c7-b254-ce9f7c940b4a
relation.isAuthorOfPublication8567a6dc-0f8c-493a-835a-3b7013c10cbe
relation.isAuthorOfPublication.latestForDiscoverye714bba7-73e7-4248-80f3-4eb6eb6179ab

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s10801-025-01414-6.pdf
Size:
470.54 KB
Format:
Adobe Portable Document Format
Description:

Collections