Reconstruction of Gene Regulatory Networks with Multi-objective Particle Swarm Optimisers

dc.centroE.T.S.I. Informáticaes_ES
dc.contributor.authorHurtado-Requena, Sandro José
dc.contributor.authorGarcía-Nieto, José Manuel
dc.contributor.authorNavas-Delgado, Ismael
dc.contributor.authorNebro-Urbaneja, Antonio Jesús
dc.contributor.authorAldana-Montes, José Francisco
dc.date.accessioned2022-09-28T10:25:03Z
dc.date.available2022-09-28T10:25:03Z
dc.date.issued2022-07-05
dc.departamentoLenguajes y Ciencias de la Computación
dc.description.abstractThe computational reconstruction of Gene Regulatory Networks (GRNs) from gene expression data has been modelled as a complex optimisation problem, which enables the use of sophisticated search methods to address it. Among these techniques, particle swarm optimisation based algorithms stand out as prominent techniques with fast convergence and accurate network inferences. A multi-objective approach for the inference of GRNs consists of optimising a given network’s topology while tuning the kinetic order parameters in an S-System, thus preventing the use of unnecessary penalty weights and enables the adoption of Pareto optimality based algorithms. In this study, we empirically assess the behaviour of a set of multi-objective particle swarm optimisers based on different archiving and leader selection strategies in the scope of the inference of GRNs. The main goal is to provide system biologists with experimental evidence about which optimisation technique performs with higher success for the inference of consistent GRNs. The experiments conducted involve time-series datasets of gene expression taken from the DREAM3/4 standard benchmarks, as well as in vivo datasets from IRMA and Melanoma cancer samples. Our study shows that multiobjective particle swarm optimiser OMOPSO obtains the best overall performance. Inferred networks show biological consistency in accordance with in vivo studies in the literature.es_ES
dc.description.sponsorshipUniversidad de Málaga. Campus de Excelencia Internacional Andalucía Tech.es_ES
dc.identifier.urihttps://hdl.handle.net/10630/25134
dc.language.isospaes_ES
dc.relation.eventdate5/9/2022es_ES
dc.relation.eventplaceSantiago de Compostelaes_ES
dc.relation.eventtitleJISBD 2022es_ES
dc.rights.accessRightsopen accesses_ES
dc.subjectGenética - Investigación - Congresoses_ES
dc.subjectBioinformática - Congresoses_ES
dc.subject.otherMulti-Objective optimisationes_ES
dc.subject.otherParticle swarm optimisationes_ES
dc.subject.otherGene regulatory networkses_ES
dc.subject.otherPerformance and quality analysises_ES
dc.subject.otherBiological systemses_ES
dc.titleReconstruction of Gene Regulatory Networks with Multi-objective Particle Swarm Optimiserses_ES
dc.typeconference outputes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication7edba7f8-0dbe-48b9-b16c-8cfde49a9a1b
relation.isAuthorOfPublication04a9ec70-bfda-4089-b4d7-c24dd0870d17
relation.isAuthorOfPublication4e298ef9-8825-4aa8-be87-ac0f8adbf1b7
relation.isAuthorOfPublicationeddeb2e3-acaf-483e-bb13-cebb22c18413
relation.isAuthorOfPublication7eac9d6a-0152-4268-8207-ea058c82e531
relation.isAuthorOfPublication.latestForDiscovery7edba7f8-0dbe-48b9-b16c-8cfde49a9a1b

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2022-JISBD-2286.pdf
Size:
115.04 KB
Format:
Adobe Portable Document Format
Description: