Efficient anytime algorithms to solve the bi-objective Next Release Problem

dc.centroE.T.S.I. Informáticaen_US
dc.contributor.authorDomínguez-Ríos, Miguel Ángel
dc.contributor.authorChicano-García, José-Francisco
dc.contributor.authorAlba-Torres, Enrique
dc.contributor.authorDel Águila, Isabel María
dc.contributor.authorDel Sagrado, José
dc.date.accessioned2019-06-27T11:04:01Z
dc.date.available2019-06-27T11:04:01Z
dc.date.created2019-06
dc.date.issued2019-06-27
dc.departamentoLenguajes y Ciencias de la Computación
dc.description.abstractThe Next Release Problem consists in selecting a subset of requirements to develop in the next release of a software product. The selection should be done in a way that maximizes the satisfaction of the stakeholders while the development cost is minimized and the constraints of the requirements are fulfilled. Recent works have solved the problem using exact methods based on Integer Linear Programming. In practice, there is no need to compute all the efficient solutions of the problem; a well-spread set in the objective space is more convenient for the decision maker. The exact methods used in the past to find the complete Pareto front explore the objective space in a lexicographic order or use a weighted sum of the objectives to solve a single-objective problem, finding only supported solutions. In this work, we propose five new methods that maintain a well-spread set of solutions at any time during the search, so that the decision maker can stop the algorithm when a large enough set of solutions is found. The methods are called anytime due to this feature. They find both supported and non-supported solutions, and can complete the whole Pareto front if the time provided is long enough.en_US
dc.description.sponsorshipMinisterio de Economía y Competitividad y FEDER (TIN2014-57341-R, TIN2015-71841-REDT, TIN2016-77902-C3-3-P y TIN2017-88213-R). Universidad de Málaga (PPIT.UMA.B1.2017/07).en_US
dc.identifier.urihttps://hdl.handle.net/10630/17907
dc.language.isoengen_US
dc.rightsAttribution-NoDerivatives 4.0 Internacional*
dc.rights.accessRightsopen accessen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/*
dc.subject.otherNext Release Problemen_US
dc.subject.otherMulti-objective optimizationen_US
dc.subject.otherSearch-based software engineeringen_US
dc.subject.otherAnytime algorithmen_US
dc.subject.otherPareto fronten_US
dc.titleEfficient anytime algorithms to solve the bi-objective Next Release Problemen_US
dc.typejournal articlees_ES
dc.type.hasVersionSMURes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication6f65e289-6502-4756-871c-dbe0ca9be545
relation.isAuthorOfPublicatione8596ab5-92f0-420d-a394-17d128c965da
relation.isAuthorOfPublication.latestForDiscovery6f65e289-6502-4756-871c-dbe0ca9be545

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
nrp-riuma.pdf
Size:
5.43 MB
Format:
Adobe Portable Document Format
Description:
Texto del artículo y material suplementario
Download

Description: Texto del artículo y material suplementario

Collections