The minimal Hilbert basis of the Hammond order cone

dc.centroFacultad de Ciencias Económicas y Empresarialeses_ES
dc.contributor.authorAbul Naga, Ramses H
dc.date.accessioned2022-08-25T09:06:59Z
dc.date.available2022-08-25T09:06:59Z
dc.date.issued2022-07-11
dc.departamentoTeoría e Historia Económica
dc.description.abstractWe characterize the minimal Hilbert basis of the Hammond order cone, and present several novel applications of the resulting basis. From the basis, we extract an invertible matrix, that provides a numerical representation of the Hammond order relation. The basis also enables the construction of a space—that we call the Hammond order lattice—where order-extensions of the Hammond order (i.e. more complete relations) may be derived. Finally, we introduce a class of maximal linearly independent Hilbert bases, in which the specific results derived in relation to the Hammond order cone, are shown to hold more generally.es_ES
dc.description.sponsorshipOpen Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. Funding for open access charge: Universidad de Málaga / CBUA.es_ES
dc.identifier.citationAbul Naga, R.H. The minimal Hilbert basis of the Hammond order cone. Econ Theory Bull (2022). https://doi.org/10.1007/s40505-022-00226-2es_ES
dc.identifier.doihttps://doi.org/10.1007/s40505-022-00226-2
dc.identifier.urihttps://hdl.handle.net/10630/24815
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectHilbert, Algebras dees_ES
dc.subject.otherMeasurement of social welfarees_ES
dc.subject.otherOrder relations induced by convex coneses_ES
dc.subject.otherHammond orderes_ES
dc.subject.otherHilbert baseses_ES
dc.titleThe minimal Hilbert basis of the Hammond order conees_ES
dc.typejournal articlees_ES
dc.type.hasVersionVoRes_ES
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s40505-022-00226-2.pdf
Size:
406.2 KB
Format:
Adobe Portable Document Format
Description:

Collections