Energy-based tuning of convolution neural networks on multi-GPUs

dc.centroE.T.S.I. Informáticaes_ES
dc.contributor.authorCastro Payán, Francisco Manuel
dc.contributor.authorGuil-Mata, Nicolás
dc.contributor.authorMarín Jiménez, Manuel Jesús
dc.contributor.authorPérez-Serrano, Jesús
dc.contributor.authorUjaldon-Martínez, Manuel
dc.date.accessioned2024-02-09T08:27:06Z
dc.date.available2024-02-09T08:27:06Z
dc.date.issued2019-11
dc.departamentoArquitectura de Computadores
dc.description.abstractDeep Learning (DL) applications are gaining momentum in the realm of Artificial Intelligence, particularly after GPUs have demonstrated remarkable skills for accelerating their challenging computational requirements. Within this context, Convolutional Neural Network (CNN) models constitute a representative example of success on a wide set of complex applications, particularly on datasets where the target can be represented through a hierarchy of local features of increas- ing semantic complexity. In most of the real scenarios, the roadmap to improve results relies on CNN settings involving brute force computation, and researchers have lately proven Nvidia GPUs to be one of the best hardware counterparts for acceleration. Our work complements those find- ings with an energy study on critical parameters for the deployment of CNNs on flagship image and video applications, ie, object recognition and people identification by gait, respectively. We evaluate energy consumption on four different networks based on the two most popular ones (ResNet/AlexNet), ie, ResNet (167 layers), a 2D CNN (15 layers), a CaffeNet (25 layers), and a ResNetIm (94 layers) using batch sizes of 64, 128, and 256, and then correlate those with speed-up and accuracy to determine optimal settings. Experimental results on a multi-GPU server endowed with twin Maxwell and twin Pascal Titan X GPUs demonstrate that energy correlates with per- formance and that Pascal may have up to 40% gains versus Maxwell. Larger batch sizes extend performance gains and energy savings, but we have to keep an eye on accuracy, which sometimes shows a preference for small batches. We expect this work to provide a preliminary guidance for a wide set of CNN and DL applications in modern HPC times, where the GFLOPS/w ratio constitutes the primary goal.es_ES
dc.description.sponsorshipMinistry of Education of Spain, Grant/Award Number: TIN2013-42253-P and TIN2016-78799-P; Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía, Grant/Award Number: P12-TIC-1741 and TIC-1692es_ES
dc.identifier.citationCastro FM, Guil N, Marín-Jiménez MJ, Pérez-Serrano J, Ujaldón M. Energy-based tuning of convolutional neural networks on multi-GPUs. Concurrency Computat Pract Exper. 2019;31:e4786. https://doi.org/10.1002/cpe.4786es_ES
dc.identifier.doihttps://doi.org/10.1002/cpe.4786
dc.identifier.urihttps://hdl.handle.net/10630/30234
dc.language.isoenges_ES
dc.publisherWileyes_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectRedes neuronales (Informática)es_ES
dc.subject.otherCNNes_ES
dc.subject.otherDeep learninges_ES
dc.subject.otherGPUes_ES
dc.subject.otherHPCes_ES
dc.subject.otherLow-poweres_ES
dc.titleEnergy-based tuning of convolution neural networks on multi-GPUses_ES
dc.typejournal articlees_ES
dc.type.hasVersionAMes_ES
dspace.entity.typePublication
relation.isAuthorOfPublicationbed8ca48-652e-4212-8c3c-05bfdc85a378
relation.isAuthorOfPublicationad015b12-4fe2-46f6-aadf-0f6dc7a09ed6
relation.isAuthorOfPublication.latestForDiscoverybed8ca48-652e-4212-8c3c-05bfdc85a378

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
paper.pdf
Size:
4.13 MB
Format:
Adobe Portable Document Format
Description:
Artículo Principal
Download

Description: Artículo Principal

Collections