FMSans: An efficient approach for constraints removal and parallel analysis of feature models

dc.contributor.authorHorcas-Aguilera, José Miguel
dc.contributor.authorBallesteros-Gómez, Joaquín
dc.contributor.authorPinto-Alarcón, Mónica
dc.contributor.authorFuentes-Fernández, Lidia
dc.date.accessioned2025-04-25T08:53:01Z
dc.date.available2025-04-25T08:53:01Z
dc.date.issued2025-04-10
dc.departamentoLenguajes y Ciencias de la Computaciónes_ES
dc.description.abstractCross-tree constraints help to compact feature models by using arbitrary propositional logic formulas, which efficiently capture interdependencies between features. However, the existence of these constraints increases the complexity of reasoning about feature models, whether we use SAT solvers or compile the model to a binary decision diagram for efficient analyses. Although some works have tried to refactor constraints to eliminate them, they deal only with simple constraints (i.e., requires and excludes) or require introducing an additional set of features, increasing the size and complexity of the resulting feature model. This paper presents an approach that eliminates all the cross-tree constraints in regular boolean feature models, including arbitrary constraints in propositional logic formulas. Our approach for removing constraints consists of splitting the semantics of feature models into orthogonal disjoint feature subtrees, which are then analyzed in parallel to alleviate the exponential blow-up in memory of the resulting feature tree. We propose a codification of the constraints and define and analyze different heuristics for constraints ordering to reduce the complexity of identifying the valid disjoint subtrees when removing constraints.es_ES
dc.description.sponsorshipFunding for open access charge: Universidad de Málaga / CBUAes_ES
dc.identifier.citationHorcas, J. M., Ballesteros, J., Pinto, M., & Fuentes, L. (2023). FMSans: An efficient approach for constraints removal and parallel analysis of feature models. ACM International Conference Proceeding Series, A-1, 99–110.es_ES
dc.identifier.doi10.1145/3579027.3608981
dc.identifier.issn1873-1228
dc.identifier.urihttps://hdl.handle.net/10630/38488
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.accessRightsopen accesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectSoporte lógico de sistemases_ES
dc.subjectLenguajes de programaciónes_ES
dc.subject.otherAutomated analysises_ES
dc.subject.otherConstraintes_ES
dc.subject.otherFeature modeles_ES
dc.subject.otherFeature treees_ES
dc.subject.otherParallelizationes_ES
dc.subject.otherSoftware product linees_ES
dc.titleFMSans: An efficient approach for constraints removal and parallel analysis of feature modelses_ES
dc.typejournal articlees_ES
dc.type.hasVersionVoRes_ES
dspace.entity.typePublication
relation.isAuthorOfPublicationf4aaacf9-21d1-47d4-a612-4fa9db809696
relation.isAuthorOfPublicationf24768fd-1c6c-429b-a107-df18cb67ba3b
relation.isAuthorOfPublication839f00c1-d583-4eeb-bb1e-d529b1df6967
relation.isAuthorOfPublication431c7076-c749-483c-8fd6-b9c18bf33a13
relation.isAuthorOfPublication.latestForDiscoveryf4aaacf9-21d1-47d4-a612-4fa9db809696

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S0164121225001025-main.pdf
Size:
4.68 MB
Format:
Adobe Portable Document Format
Description:

Collections