Modelado de rendimiento de segmento en redes de acceso radio mediante aprendizaje supervisado

dc.centroE.T.S.I. Telecomunicaciónes_ES
dc.contributor.authorGijón-Martín, Carolina
dc.contributor.authorToril-Genovés, Matías
dc.contributor.authorLuna-Ramírez, Salvador
dc.contributor.authorBejarano-Luque, Juan Luis
dc.date.accessioned2022-09-14T11:13:33Z
dc.date.available2022-09-14T11:13:33Z
dc.date.created2022-09
dc.date.issued2022-09
dc.departamentoIngeniería de Comunicaciones
dc.description.abstractIn 5G systems, the Network Slicing (NS) feature allows to deploy several logical networks customized for specific verticals over a common physical infrastructure. In the Radio Access Network (RAN), cellular operators need slice performance models for re-dimensioning purposes. In this work, we present a comprehensive analysis assessing the performance of Supervised Learning (SL) to estimate slice throughput in the down link of RAN-sliced networks, relying on information collected in the operations support system. Different SL algorithms are tested in two NS scenarios with single-service and multi-service slices, respectively. To this end, synthetic datasets with performance indicators and connection traces are generated with a systemlevel simulator emulating the activity of a sliced RAN in a live scenario. Results show that the best model (i.e., combination of SL algorithm and input features) may vary depending on the NS scenario. The best models have shown an error below 10 %.es_ES
dc.description.sponsorshipUniversidad de Málaga. Campus de Excelencia Internacional Andalucía Teches_ES
dc.identifier.urihttps://hdl.handle.net/10630/24993
dc.language.isospaes_ES
dc.relation.eventdateSeptiembre 2022es_ES
dc.relation.eventplaceMálaga (España)es_ES
dc.relation.eventtitleURSI 2022es_ES
dc.rights.accessRightsopen accesses_ES
dc.subjectRedes de banda ancha - Congresoses_ES
dc.subject.otherAprendizaje supervisadoes_ES
dc.subject.otherSegmento de redes_ES
dc.subject.otherRendimientoes_ES
dc.titleModelado de rendimiento de segmento en redes de acceso radio mediante aprendizaje supervisadoes_ES
dc.typeconference outputes_ES
dspace.entity.typePublication
relation.isAuthorOfPublication014c95aa-41da-4fb1-b41d-1e297ff0ecb6
relation.isAuthorOfPublicationc062c7f9-a73f-4f6e-8d25-d8258916a967
relation.isAuthorOfPublication.latestForDiscovery014c95aa-41da-4fb1-b41d-1e297ff0ecb6

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
documento_riuma_CarolinaGijon.pdf
Size:
9.11 KB
Format:
Adobe Portable Document Format
Description: