RT Journal Article T1 Weighted inequalities for Cesàro maximal operator in Orlicz spaces. A1 Ortega-Salvador, Pedro A1 Ramírez Torreblanca, Consuelo K1 Desigualdades (Matemáticas) K1 Orlicz, Espacios de K1 Análisis matemático AB Let 0 < α ≤ 1 and let M+α be the Cesàro maximal operator of order α defined by In this work we characterize the pairs of measurable, positive and locally integrable functions (u, v) for which there exists a constant C > 0 such that the inequality holds for all λ > 0 and every f in the Orlicz space LΦ(v). We also characterize the measurable, positive and locally integrable functions w such that the integral inequality holds for every f LΦ(w). The discrete versions of this results allow us, by techniques of transference, to prove weighted inequalities for the Cesàro maximal ergodic operator associated with an invertible measurable transformation, T, which preserves the measure.Finally, we give sufficient conditions on w for the convergence of the sequence of Cesàro-α ergodic averages for all functions in the weighted Orlicz space LΦ(w). PB Cambridge University Press YR 2005 FD 2005-04-26 LK https://hdl.handle.net/10630/31380 UL https://hdl.handle.net/10630/31380 LA eng NO Salvador PO, Torreblanca CR. Weighted inequalities for Cesàro maximal operators in Orlicz spaces. Proceedings of the Royal Society of Edinburgh: Section A Mathematics. 2005;135(6):1287-1308. doi:10.1017/S0308210500004388 NO Política de acceso abierto tomada de: Proceedings of the Royal Society of Edinburg DS RIUMA. Repositorio Institucional de la Universidad de Málaga RD 19 ene 2026