RT Conference Proceedings T1 Anomalous trajectory detection for automated traffic video surveillance A1 Fernández-Rodríguez, Jose David A1 García-González, Jorge A1 Benítez-Rochel, Rafaela A1 Molina-Cabello, Miguel Ángel A1 López-Rubio, Ezequiel A1 García-González, Jorge K1 Diseño orientado a objetos K1 Videovigilancia electrónica K1 Visión artificial (Robótica) AB Vehicle trajectories extracted from traffic video sequences can be helpful for many purposes. In particular, the analysis of detected anomalous trajectories may enhance drivers’ safety. This work proposes a methodology to detect anomalous vehicle trajectories by using a vehicle detection, a vehicle tracking and a processing of the tracking information steps. Once trajectories are detected, their velocity vectors are estimated and an anomaly value is computed for each trajectory by comparing its vector with those from its nearest neighbours. The management of these anomaly values allows considering which trajectories are suitable to be potentially anomalous considered. Real and synthetic videos have been included in the experiments to perform the goodness of the proposal. YR 2022 FD 2022 LK https://hdl.handle.net/10630/24353 UL https://hdl.handle.net/10630/24353 LA eng NO Universidad de Málaga. Campus de Excelencia Internacional Andalucía TechGobierno de España bajo el proyecto RTI2018-094645-B-I00Junta de Andalucía bajo el proyecto UMA18-FEDERJA-084 DS RIUMA. Repositorio Institucional de la Universidad de Málaga RD 21 ene 2026