RT Journal Article T1 Latency Fairness Optimization on Wireless Networks Through Deep Reinforcement Learning A1 López-Sánchez, María A1 Villena-Rodríguez, Alejandro A1 Gómez-Paredes, Gerardo A1 Martín-Vega, Francisco-Javier A1 Aguayo-Torres, María del Carmen K1 Aprendizaje automático (Inteligencia artificial) K1 Sistemas de comunicación inalámbricos AB In this paper, we propose a novel deep reinforcement learning (DRL) framework to maximize user fairness in terms of delay. To this end, we devise a new version of the modified largest weighted delay first (M-LWDF) algorithm, called β-M-LWDF, aiming to fulfill an appropriate balance between user fairness and average delay. This balance is defined as a feasible region on the cumulative distribution function (CDF) of the user delay that allows identifying unfair states, feasible-fair states, and over-fair states. Simulation results reveal that our proposed framework outperforms traditional resource allocation techniques in terms of latency fairness and average delay. PB IEEE YR 2022 FD 2022-11-23 LK https://hdl.handle.net/10630/40872 UL https://hdl.handle.net/10630/40872 LA eng NO M. López-Sánchez, A. Villena-Rodríguez, G. Gómez, F. J. Martín-Vega and M. C. Aguayo-Torres, "Latency Fairness Optimization on Wireless Networks Through Deep Reinforcement Learning," in IEEE Transactions on Vehicular Technology, vol. 72, no. 4, pp. 5407-5412, April 2023, doi: 10.1109/TVT.2022.3224368 NO https://openpolicyfinder.jisc.ac.uk/id/publication/3582 NO Unión Europea NO Junta de Andalucía NO Universidad de Málaga NO Agencia Estatal de Investigación DS RIUMA. Repositorio Institucional de la Universidad de Málaga RD 24 ene 2026