RT Journal Article T1 Saccadic points classification using Multilayer Perceptron and Randon Forest classifiers in EOG recording of patients with Ataxia SCA2 A1 Becerra-García, Roberto Antonio A1 Joya-Caparrós, Gonzalo A1 García, Rodolfo A1 Velázquez, Luis A1 Rodríguez, Roberto A1 Pino, Carmen K1 Ojos - Movimiento K1 Tecnología AB In this paper, we compare the performance of two different methods for the task of electrooculogram saccadic points classification in Patients with Ataxia SCA2: Multilayer Perceptrons (MLP) and Random Forest. First we segment the recordings of 6 subjects into ranges of saccadic and non-saccadic points as the basis of supervised learning. Then, we randomly select a set of cases based on the velocity profile near each selected point for training and validation purposes using percent split scheme. Obtained results show that both methods have similar performance in classification matter, and seem to be suitable to solve theproblem of saccadic point classification in electrooculographic records from subjects with Ataxia SCA2. YR 2013 FD 2013-10-23 LK http://hdl.handle.net/10630/6153 UL http://hdl.handle.net/10630/6153 LA eng NO AECID: Agencia Española de Cooperación Internacional para el Desarrollo. Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. DS RIUMA. Repositorio Institucional de la Universidad de Málaga RD 20 ene 2026