RT Book, Section T1 Content Based Image Retrieval by Convolutional Neural Networks A1 Hamreras, Safa A1 Benítez-Rochel, Rafaela A1 Boucheham, Bachir A1 Molina-Cabello, Miguel Ángel A1 López-Rubio, Ezequiel K1 Computación, Teoría de la K1 Informática AB In this paper, we present a Convolutional Neural Network (CNN) for feature extraction in Content based Image Retrieval (CBIR). The proposed CNN aims at reducing the semantic gap between low level and high-level features. Thus, improving retrieval results. Our CNN is the result of a transfer learning technique using Alexnet pretrained network. It learns how to extract representative features from a learning database and then uses this knowledge in query feature extraction. Experimentations performed on Wang (Corel 1K) database show a significant improvement in terms of precision over the state of the art classic approaches. YR 2019 FD 2019-06-07 LK https://hdl.handle.net/10630/17778 UL https://hdl.handle.net/10630/17778 LA eng NO Hamreras S., Benítez-Rochel R., Boucheham B., Molina-Cabello M.A., López-Rubio E. (2019) Content Based Image Retrieval by Convolutional Neural Networks. In: Ferrández Vicente J., Álvarez-Sánchez J., de la Paz López F., Toledo Moreo J., Adeli H. (eds) From Bioinspired Systems and Biomedical Applications to Machine Learning. IWINAC 2019. Lecture Notes in Computer Science, vol 11487. Springer. NO Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. DS RIUMA. Repositorio Institucional de la Universidad de Málaga RD 24 ene 2026