RT Book, Section T1 A filtration associated to an abelian inner ideal and the speciality of the subquotient of a Lie algebra. A1 García, Esther A1 Gómez-Lozano, Miguel Ángel A1 Muñoz-Alcázar, Rubén José A2 Dobrev, Vladimir K1 Álgebras de Lie K1 Categorías (Matemáticas) AB For any abelian inner ideal B of a Lie algebra L such that [B, KerB]^n ⊆ B for some natural n, we build a bounded filtration whose first nonzero term is B and the extremes of the induced Z-graded Lie algebra coincide with the subquotient (B, L/KerB). Thanks to this fi ltration, we can prove that when a Lie algebra L is strongly prime and KerB is not a subalgebra of L, then subquotient (B, L=KerB) is a special strongly prime Jordan pair. PB Springer Nature YR 2022 FD 2022 LK https://hdl.handle.net/10630/34899 UL https://hdl.handle.net/10630/34899 LA eng NO Política de acceso abierto tomada de: https://www.springernature.com/gp/open-science/policies/book-policies DS RIUMA. Repositorio Institucional de la Universidad de Málaga RD 20 ene 2026