RT Journal Article T1 Cesàro-type operators associated with Borel measures on the unit disc acting on some Hilbert spaces of analytic functions A1 Galanopoulos, Petros A1 Girela-Álvarez, Daniel A1 Merchán-Álvarez, Noel K1 Análisis matemático AB Given a complex Borel measure μon the unit disc D={z∈C:|z| <1}, we consider the Cesàro-type operator Cμdefined on the space Hol(D)of all analytic functions in Das follows:If f∈Hol(D), f(z) = ∞n=0anzn(z∈D), then Cμ(f)(z) = ∞n=0μn nk=0ak zn, (z∈D), where, for n ≥0, μndenotes the n-th moment of the measure μ, that is, μn= Dwndμ(w).We study the action of the operators Cμon some Hilbert spaces of analytic function in D, namely, the Hardy space H2and the weighted Bergman spaces A2α(α >−1). Among other results, we prove that, if we set Fμ(z) = ∞n=0μnzn(z∈D), then Cμis bounded on H2or on A2αif and only if Fμbelongs to the mean Lipschitz space Λ21/2. We prove also that Cμis a Hilbert-Schmidt operator on H2if and only if Fμbelongs to the Dirichlet space D, and that Cμis a Hilbert-Schmidt operator on A2αif and only if Fμbelongs to the Dirichlet-type space D2−1−α. PB Elsevier YR 2023 FD 2023 LK https://hdl.handle.net/10630/26343 UL https://hdl.handle.net/10630/26343 LA eng NO Petros Galanopoulos, Daniel Girela, Noel Merchán, Cesàro-type operators associated with Borel measures on the unit disc acting on some Hilbert spaces of analytic functions, Journal of Mathematical Analysis and Applications, Volume 526, Issue 2, 2023, 127287, ISSN 0022-247X, https://doi.org/10.1016/j.jmaa.2023.127287. (https://www.sciencedirect.com/science/article/pii/S0022247X23002901) NO Funding for open access charge: Universidad de Málaga / CBUAThis research is supported in part by a grant from “El Ministerio de Economía y Competitividad” Spain (PGC2018-096166-B-I00) and by grants from la Junta de Andalucía (FQM-210 and UMA18-FEDERJA-002). DS RIUMA. Repositorio Institucional de la Universidad de Málaga RD 20 ene 2026