RT Conference Proceedings T1 SAR Nets: An Evaluation of Semantic Segmentation Networks with Attention Mechanisms for Search and Rescue Scenes. A1 Salas Espinales, Andrés A1 Vázquez-Martín, Ricardo A1 García-Cerezo, Alfonso José A1 Mandow, Anthony K1 Aprendizaje automático (Inteligencia artificial) K1 Visión por ordenador K1 Catástrofes AB This paper evaluates four semantic segmentation models in Search-and-Rescue (SAR) scenarios obtained from ground vehicles. Two base models are used (U-Net and PSPNet) to compare different approaches to semantic segmentation, such as skip connections between encoder and decoder stages and using a pooling pyramid module. The best base model is modified by including two attention mechanisms to analyze their performance and computational cost. We conduct a quantitative and qualitative evaluation using our SAR dataset defining eleven classes in disaster scenarios. The results demonstrate thatthe attention mechanisms increase model performance while minimally affecting the computation time. YR 2023 FD 2023 LK https://hdl.handle.net/10630/28175 UL https://hdl.handle.net/10630/28175 LA eng NO Andrés Salas-Espinales, Ricardo Vázquez-Martı́n, Alfonso Garcı́a-Cerezo, and Anthony Mandow. SAR Nets: An Evaluation of Semantic Segmentation Networks with Attention Mechanisms for Search and Rescue Scenes. Proc. of the IEEE International Symposium on Safety, Security and Rescue Robotics (SSRR) 2023. Fukushima, Japan. NO This work has been partially funded by the Spanish Ministerio de Ciencia, Innovación y Universidades, Gobierno de España, project PID2021-122944OB-I00.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. DS RIUMA. Repositorio Institucional de la Universidad de Málaga RD 21 ene 2026