RT Journal Article T1 A filtration associated to an abelian inner ideal of a Lie algebra. A1 García González, Esther A1 Gómez-Lozano, Miguel Ángel A1 Muñoz-Alcázar, Rubén José K1 Lie, Álgebras de K1 Grupos abelianos K1 Anillos (Álgebra) AB Let B be an abelian inner ideal and let KerL B be the kernel of B. In this paper we show that when there exists n ∈ N with [B,KerL B] n ⊂ B, the inner ideal B induces a bounded filtration in L where B is the first nonzero submodule of the filtration and where the wings of the Lie algebra associated to the filtration coincide with the subquotient determined by B. This filtration extends the principal filtration induced by ad-nilpotent elements of index less than or equal to three defined in [E. García, M. Gómez Lozano, Principal filtrations of Lie algebras, Commun. Algebra 40 (10) (2012) 3622–3628]. PB Elsevier YR 2022 FD 2022-12-14 LK https://hdl.handle.net/10630/27994 UL https://hdl.handle.net/10630/27994 LA eng NO Esther García, Miguel Gómez Lozano, Rubén Muñoz Alcázar, A filtration associated to an abelian inner ideal of a Lie algebra, Journal of Geometry and Physics, Volume 185, 2023, 104728, ISSN 0393-0440, https://doi.org/10.1016/j.geomphys.2022.104728 NO All authors were partially supported by the Junta de Andalucía FQM264, and by the Universidad de Málaga B4: Ayudas para Proyectos Puente UMA “Sistemas de Jordan, álgebras de Lie y estructuras relacionadas”. DS RIUMA. Repositorio Institucional de la Universidad de Málaga RD 21 ene 2026