RT Conference Proceedings T1 Evaluation of CNN architectures for gait recognition based on optical flow maps A1 Castro, Francisco M. A1 Marín-Jiménez, Manuel J. A1 Guil-Mata, Nicolás A1 López-Tapia, S. A1 Pérez de la Blanca, N. K1 Identificación AB This work targets people identification in video based on the way they walk (\ie gait) by using deep learning architectures. We explore the use of convolutional neural networks (CNN) for learning high-level descriptors from low-level motion features (\ie optical flow components). The low number of training samples for each subject and the use of a test set containing subjects different from the training ones makes the search of a good CNN architecture a challenging task. YR 2017 FD 2017 LK http://hdl.handle.net/10630/14592 UL http://hdl.handle.net/10630/14592 LA eng NO Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech DS RIUMA. Repositorio Institucional de la Universidad de Málaga RD 20 ene 2026