RT Journal Article T1 Well-balanced POD-based reduced-order models for finite volume approximation of hyperbolic balance laws A1 Gómez Bueno, Irene A1 Fernández Nieto, Enrique Domingo A1 Rubino, S. K1 Método de los volúmenes finitos K1 Descomposición (Matemáticas) K1 Ecuaciones diferenciales hiperbólicas K1 Matemáticas aplicadas AB This paper introduces a reduced-order modeling approach based on finite volume methods for hyperbolic systems, combining Proper Orthogonal Decomposition (POD) with the Discrete Empirical Interpolation Method (DEIM) and Proper Interval Decomposition (PID). Applied to systems such as the transport equation with source term, non-homogeneous Burgers equation, and shallow water equations with non-flat bathymetry and Manning friction, this method achieves significant improvements in computational efficiency and accuracy compared to previous time-averaging techniques. A theoretical result justifying the use of well-balanced Full-Order Models (FOMs) is presented. Numerical experiments validate the approach, demonstrating its accuracy and efficiency. Furthermore, the question of prediction of solutions for systems that depend on some physical parameters is also addressed, and a sensitivity analysis on POD parameters confirms the model’s robustness and efficiency in this case. PB Elsevier SN 0377-0427 YR 2025 FD 2025-05-04 LK https://hdl.handle.net/10630/38694 UL https://hdl.handle.net/10630/38694 LA eng NO Gómez-Bueno, I., Fernández-Nieto, E. D., & Rubino, S. (2026). Well-balanced POD-based reduced-order models for finite volume approximation of hyperbolic balance laws. Journal of Computational and Applied Mathematics, 471, 116735. NO Funding for open access charge: Universidad de Málaga / CBUA DS RIUMA. Repositorio Institucional de la Universidad de Málaga RD 20 ene 2026