RT Conference Proceedings T1 Bi-LSTM Neural Network for EEG-based detection of musical characteristics A1 Ariza Cervera, Isaac A1 Guillén, Sergio A1 Tardón-García, Lorenzo José A1 Barbancho-Pérez, Ana María A1 Barbancho-Pérez, Isabel K1 Redes neuronales (Informática) K1 Aprendizaje K1 Música - Estudio y enseñanza AB Electroencephalography (EEG) combined with Deep Learning and digital signal processing allows for mental activity recognition. In our study, a new feature extraction model-based is presented when combined with Bi-LSTM Neural Networks for EEG musical characteristics classification. This method can be used for both intra- and inter-subject scenarios reaching compelling accuracy values. YR 2023 FD 2023 LK https://hdl.handle.net/10630/29209 UL https://hdl.handle.net/10630/29209 LA eng NO This publication is part of project PID2021-123207NB-I00, funded by MCIN / AEI / 10.13039 / 501100011033 / FEDER, UE. Universidad de Málaga, Campus de Excelencia Internacional Andalucía Tech. DS RIUMA. Repositorio Institucional de la Universidad de Málaga RD 21 ene 2026