RT Journal Article T1 Fisher Motion Descriptor for Multiview Gait Recognition. A1 Castro, Francisco M. A1 Marín Jiménez, Manuel Jesús A1 Guil-Mata, Nicolás A1 Muñoz-Salinas, Rafael K1 Arquitectura de ordenadores AB This paper aims to identify individuals by analyzing their gait using motion descriptors based on densely sampled short-term trajectories, instead of traditional binary silhouettes. The approach leverages advanced people detectors to create detailed spatial configurations around the person, capturing rich gait motion. Local motion features, combined using Fisher Vector encoding, result in a high-level gait descriptor called Pyramidal Fisher Motion. The method is validated on multiple datasets (CASIA, TUM GAID, CMU MoBo, and AVA Multiview Gait), achieving state-of-the-art results in recognizing individuals across various conditions such as different viewpoints, clothing, speeds, and walking paths. PB World Scientific YR 2017 FD 2017 LK https://hdl.handle.net/10630/32712 UL https://hdl.handle.net/10630/32712 LA eng NO International Journal of Pattern Recognition and Artificial Intelligence, Volumen 31, Número 01, Páginas 1756002 NO Política de acceso abierto tomada de: https://v2.sherpa.ac.uk/id/publication/9703 DS RIUMA. Repositorio Institucional de la Universidad de Málaga RD 20 ene 2026