RT Conference Proceedings T1 Data mining for municipal financial distress prediction A1 Alaminos Aguilera, David A1 Fernández, David A1 García-Lopera, Francisca A1 Fernández, Manuel Ángel K1 Minería de datos (Informática) AB Data mining techniques are capable of extracting valuable knowledge from large and variable databases. This work proposes a data mining method for municipal financial distress prediction. Using a new proxy of municipal financial situation and a sample of 128 Spanish municipalities, the empirical experiment obtained satisfactory results, which testifies to the viability and validity of the data mining method proposed for municipal financial distress prediction. YR 2018 FD 2018-07-31 LK https://hdl.handle.net/10630/16388 UL https://hdl.handle.net/10630/16388 LA eng NO Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. DS RIUMA. Repositorio Institucional de la Universidad de Málaga RD 20 ene 2026