RT Book, Whole T1 Making Sense of Large Social Media Corpora: Keywords, Topics, Sentiment, and Hashtags in the Coronavirus Twitter Corpus. A1 Moreno-Ortiz, Antonio Jesús K1 Pandemia de la COVID-19, 2020-2023 K1 Medios de comunicación social K1 Redes sociales en internet K1 Análisis del discurso K1 Lingüística computacional AB This open access book offers a comprehensive overview of available techniques and approaches to explore large social media corpora, using as an illustrative case study the Coronavirus Twitter corpus. First, the author describes in detail a number of methods, strategies, and tools that can be used to access, manage, and explore large Twitter/X corpora, including both user-friendly applications and more advanced methods that involve the use of data management skills and custom programming scripts. He goes on to show how these tools and methods are applied to explore one of the largest Twitter datasets on the COVID-19 pandemic publicly released, covering the two years when the pandemic had the strongest impact on society. Specifically, keyword extraction, topic modelling, sentiment analysis, and hashtag analysis methods are described, contrasted, and applied to extract information from the Coronavirus Twitter Corpus. The book will be of interest to students and researchers in fields that make use of big data to address societal and linguistic concerns, including corpus linguistics, sociology, psychology, and economics. PB Palgrave Macmillan YR 2024 FD 2024-05 LK https://hdl.handle.net/10630/38803 UL https://hdl.handle.net/10630/38803 LA eng NO Moreno-Ortiz, A. (2024). Making Sense of Large Social Media Corpora: Keywords, topics, entities, and sentiment in the Coronavirus Twitter Corpus. Palgrave Macmillan. https://doi.org/10.1007/978-3-031-52719-7 NO Ministerio de Ciencia e Innovacion DS RIUMA. Repositorio Institucional de la Universidad de Málaga RD 21 ene 2026