RT Journal Article T1 The algebraic entropies of the Leavitt path algebra and the graph algebra agree. A1 Martín-Barquero, Dolores A1 Bock, Wolfgang A1 Ruiz Campos, Iván A1 Gil-Canto, Cristóbal A1 Martín-González, Cándido A1 Sebandal, Alfilgen K1 Entropía K1 Álgebra abstracta K1 Teoría de grafos AB In this note we prove that the algebras L_K(E) and KE have the same entropy. Entropy is always referred to the standard filtrations in the corresponding kind of algebra. The main argument leans on (1) the holomorphic functional calculus; (2) the relation of entropy with suitable norm of the adjacency matrix; and (3) the Cohn path algebras which yield suitable bounds for the algebraic entropies. PB Springer Nature YR 2024 FD 2024-10-24 LK https://hdl.handle.net/10630/38173 UL https://hdl.handle.net/10630/38173 LA eng NO Wolfgang Bock, Cristóbal Gil Canto, Dolores Martín Barquero, Cándido Martín González, Iván Ruiz Campos y Alfilgen Sebandal. The algebraic entropies of the Leavitt path algebra and the graph algebra agree. Results in Mathematics, 79:266 (2024). NO PID2023-152673NB-I00FQM-336 DS RIUMA. Repositorio Institucional de la Universidad de Málaga RD 23 ene 2026