RT Journal Article T1 Uncertainty analysis of ANN based spectral analysis using Monte Carlo method A1 Salinas, J.R. A1 García-Lagos, Francisco A1 Díaz-de-Aguilar, J A1 Joya-Caparrós, Gonzalo A1 Sandoval-Hernández, Francisco K1 Redes neuronales (Informática) K1 Incertidumbre K1 Espectroscopía AB Uncertainty analysis of an Artificial Neural Network (ANN) based method for spectral analysis of asynchronously sampled signals is performed. Main uncer-tainty components contributions, jitter and quantization noise, are considered in order to obtain the signal amplitude and phase uncertainties using Monte Carlo method. The analysis performed identifies also uncertainties main contributions depending on parameters configurations. The analysis is performed simultane-ously with the proposed method and two others: Discrete Fourier Transform (DFT) and Multiharmonic Sine Fitting Method (MSFM), in order to compare them in terms of uncertainty. Results show the proposed method has the same uncertainty as DFT for amplitude values and around double uncertainty in phase values. PB Springer YR 2017 FD 2017-06 LK http://hdl.handle.net/10630/13937 UL http://hdl.handle.net/10630/13937 LA eng NO Salinas J.R., García-Lagos F., de Aguilar J.D., Joya G., Sandoval F. (2017) Uncertainty Analysis of ANN Based Spectral Analysis Using Monte Carlo Method. In: Rojas I., Joya G., Catala A. (eds) Advances in Computational Intelligence. IWANN 2017. Lecture Notes in Computer Science, vol 10305. Springer, Cham NO Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. DS RIUMA. Repositorio Institucional de la Universidad de Málaga RD 21 ene 2026