RT Journal Article T1 Two-dimensional perfect evolution algebras over domains. A1 Cabrera-Casado, Yolanda A1 Martín-Barquero, Dolores A1 Martín-González, Cándido K1 Álgebra K1 Dominios integrales K1 Módulos (Algebra) AB We will study evolution algebras A that are free modules of dimension two over domains. We start by making some general considerations about algebras over domains: They are sandwiched between a certain essential D-submodule and its scalar extension over the field of fractions of the domain. We introduce the notion of quasiperfect algebras and we characterize the perfect and quasiperfect evolution algebras in terms of the determinant of its structure matrix. We classify the two-dimensional perfect evolution algebras over domains parametrizing the isomorphism classes by a convenient moduli set. PB Springer Nature YR 2023 FD 2023-01-23 LK https://hdl.handle.net/10630/26392 UL https://hdl.handle.net/10630/26392 LA eng NO Casado, Y. C., Barquero, D. M., & González, C. M. (2023). Two-dimensional perfect evolution algebras over domains. Journal of Algebraic Combinatorics, 1-19. NO Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. // Funding for open access charge: Universidad de Málaga / CBUA DS RIUMA. Repositorio Institucional de la Universidad de Málaga RD 23 ene 2026