RT Conference Proceedings T1 Asignación de cabezales radio a procesadores banda base mediante redes neuronales de grafos. A1 Sánchez-Martín, Joaquín Manuel A1 Toril-Genovés, Matías A1 Walshaw, Chris A1 Bejarano-Luque, Juan Luis A1 Gijón-Martín, Carolina K1 Sistemas de comunicaciones inalámbricos K1 Radio K1 Redes neuronales (Informática) AB In 5G networks, Cloud-Radio Access Network (C-RAN) architecture divides legacy base stationsinto Radio Remote Heads (RRH) and Base Band Units (BBU). RRHs transmit and receive radiosignals, whereas BBUs process those signals. Thus, BBUs can be centralized in cloud processingcenters serving different groups of RRHs. An adequate allocation of RRHs to BBUs is essentialto guarantee C-RAN performance. With the latest advances in machine learning, this task canbe automatically addressed through supervised learning. This paper proposes a methodology forallocating RRHs to BBUs in heterogeneous cellular networks relying on graph partitioningthrough a graph neural network. Model performance is assessed over a dataset built with a radioplanning tool that implements a realistic Long-Term Evolution (LTE) heterogeneous network.Results have shown that the proposed method improves performance of a patented state-of-thearttool based on graph partitioning. YR 2023 FD 2023 LK https://hdl.handle.net/10630/27592 UL https://hdl.handle.net/10630/27592 LA spa NO Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. DS RIUMA. Repositorio Institucional de la Universidad de Málaga RD 19 ene 2026