RT Generic T1 MLOps para el desarrollo y puesta en producción de modelos de Machine Learning T2 MLOps for the development and production deployment of Machine Learning models A1 Valderrama Santiago, Pablo K1 Aprendizaje automático (Inteligencia artificial) K1 Grado en Ingeniería Informática - Trabajos Fin de Grado K1 Informática - Trabajos Fin de Grado AB Machine Learning Model Operationalization Management (MLOps) constituye una metodología de trabajo orientada al desarrollo de modelos de predicción basados en algoritmos de Machine Learning. Esta metodología está conformada por un conjunto exhaustivo de principios, recomendaciones, directrices y buenas prácticas enfocadas en el abordaje metodológico del desarrollo de modelos de Machine Learning desde su experimentación inicial hasta su puesta en producción. Para alcanzar este objetivo, esta metodología propone una división del desarrollo de estos proyectos en 4 fases consecutivas. Estas fases comprenden las tareas de desarrollo de modelos, preparación de los modelos para el despliegue en producción, el despliegue en producción y la monitorización de los modelos desplegados. Este Trabajo de Fin de Grado explora de forma teórica este conjunto de principios metodológicos estudiando cada una de las fases de desarrollo propuestas. De forma paralela, se aborda el desarrollo de un modelo de predicción de Machine Learning para la predicción de consumos energéticos horarios individuales y su puesta en producción. En este desarrollo se adoptará MLOps para llevar a cabo el entrenamiento de modelos basados en RandomForest y K-Means, el diseño de un código para dar ejecución a estos modelos, el diseño de imágenes para su contenerización y su despliegue en un clúster de Kubernetes YR 2021 FD 2021-09 LK https://hdl.handle.net/10630/23550 UL https://hdl.handle.net/10630/23550 LA spa DS RIUMA. Repositorio Institucional de la Universidad de Málaga RD 22 ene 2026