RT Journal Article T1 Parallel multi-objective metaheuristics for smart communications in vehicular networks. A1 Toutouh-el-Alamin, Jamal A1 Alba-Torres, Enrique K1 Sistemas inteligentes de transporte K1 Programación heurística AB This article analyzes the use of two parallel multi-objective soft computing algorithms to automatically search for high-quality settings of the Ad hoc On Demand Vector routing protocol for vehicular networks. These methods are based on an evolutionary algorithm and on a swarm intelligence approach. The experimental analysis demonstrates that the configurations computed by our optimization algorithms outperform other state-of-the-art optimized ones. In turn, the computational efficiency achieved by all the parallel versions is greater than 87 %. Therefore, the line of work presented in this article represents an efficient framework to improve vehicular communications. PB Springer Nature YR 2015 FD 2015 LK https://hdl.handle.net/10630/32567 UL https://hdl.handle.net/10630/32567 LA eng NO Toutouh, J., Alba, E. Parallel multi-objective metaheuristics for smart communications in vehicular networks. Soft Comput 21, 1949–1961 (2017). NO Política de acceso abierto tomada de: https://v2.sherpa.ac.uk/id/publication/28648 DS RIUMA. Repositorio Institucional de la Universidad de Málaga RD 20 ene 2026