RT Journal Article T1 On the sharpness of some quantitative Muckenhoupt-Wheeden inequalities. A1 Lerner, Andrei A1 Li, Kangwei A1 Ombrosi, Sheldy J. A1 Rivera Ríos, Israel P. K1 Desigualdades (Matemáticas) AB . In the recent work [Cruz-Uribe et al. (2021)] it was obtained that|{x ∈ Rd: w(x)|G(f w−1)(x)| > α}| ≲[w]2A1αZRd|f |dxboth in the matrix and scalar settings, where G is either the Hardy–Littlewood maximal function or anyCalderón–Zygmund operator. In this note we show that the quadratic dependence on [w]A1is sharp. Thisis done by constructing a sequence of scalar-valued weights with blowing up characteristics so that thecorresponding bounds for the Hilbert transform and maximal function are exactly quadratic. PB Académie des sciences YR 2024 FD 2024 LK https://hdl.handle.net/10630/35569 UL https://hdl.handle.net/10630/35569 LA eng NO Andrei K. Lerner; Kangwei Li; Sheldy Ombrosi; Israel P. Rivera-Ríos. On the sharpness of some quantitative Muckenhoupt–Wheeden inequalities. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1253-1260. doi : 10.5802/crmath.638. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.638/ DS RIUMA. Repositorio Institucional de la Universidad de Málaga RD 20 ene 2026