RT Conference Proceedings T1 Moving object detection in noisy video sequences using deep convolutional disentangled representations. A1 García-González, Jorge A1 Luque-Baena, Rafael Marcos A1 Ortiz-de-Lazcano-Lobato, Juan Miguel A1 López-Rubio, Ezequiel K1 Procesado de imágenes AB Noise robustness is crucial when approaching a moving de-tection problem since image noise is easily mistaken formovement. In order to deal with the noise, deep denoisingautoencoders are commonly proposed to be applied on imagepatches with an inherent disadvantage with respect to thesegmentation resolution. In this work, a fully convolutionalautoencoder-based moving detection model is proposed inorder to deal with noise with no patch extraction required.Different autoencoder structures and training strategies arealso tested to get insights into the best network design ap-proach. YR 2022 FD 2022 LK https://hdl.handle.net/10630/25286 UL https://hdl.handle.net/10630/25286 LA eng NO Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. DS RIUMA. Repositorio Institucional de la Universidad de Málaga RD 20 ene 2026