RT Journal Article T1 Hankel matrices acting on the Hardy space H1 and on Dirichlet spaces. A1 Girela-Álvarez, Daniel A1 Merchán-Álvarez, Noel K1 Hankel, Operadores de K1 Hilbert, Operadores en espacio de K1 Álgebra lineal AB If μ is a positive Borel measure on the interval [0, 1) we let H_μ be the Hankel matrix H_μ={ μ_{n,k} }_{n,k} with entries μ_{n,k} =μ_{n+k} where μ_n denotes the moment of order n of μ. This matrix induces formally an operator on the space of all analytic functions in the unit disc D. When μ is the Lebesgue measure on [0,1) the operator H_μ is the classical Hilbert operator H which is bounded on H^p if 1