RT Journal Article T1 The Achievement Set of Generalized Multigeometric Sequences A1 Karvatskyi, Dmytro A1 Murillo-Mas, Aniceto A1 Viruel-Arbaizar, Antonio Ángel K1 Geometría AB We study the topology of all possible subsums of the generalized multigeometric series where are fixed positive real numbers and f runs along a certain class of non-negative functions on the unit interval. We detect particular regions of this interval for which this achievement set is, respectively, a compact interval, a Cantor set and a Cantorval. PB Springer YR 2024 FD 2024-04-13 LK https://hdl.handle.net/10630/31035 UL https://hdl.handle.net/10630/31035 LA eng NO Karvatskyi, D., Murillo, A. & Viruel, A. The Achievement Set of Generalized Multigeometric Sequences. Results Math 79, 132 (2024). https://doi.org/10.1007/s00025-024-02158-8 NO Funding for open access charge: Universidad de Málaga / CBUA DS RIUMA. Repositorio Institucional de la Universidad de Málaga RD 20 ene 2026