RT Journal Article T1 Integral Operators Induced by Symbols with Non-negative Maclaurin Coefficients Mapping into H∞ A1 Peláez-Márquez, José Ángel A1 Rättyä, Jouni A1 Fanglei, Wu K1 Operadores integrales AB For analytic functions g on the unit disk with non-negative Maclaurin coefficients, we describe the boundedness and compactness of the integral operator Tg( f )(z) = z 0 f (ζ )g(ζ ) dζ from a space X of analytic functions in the unit disk to H∞, in terms of neat and useful conditions on the Maclaurin coefficients of g. The choices of X that will be considered contain the Hardy and the Hardy–Littlewood spaces, the Dirichlet-type spaces Dp p−1, as well as the classical Bloch and BMOA spaces. PB Springer YR 2022 FD 2022-02-20 LK https://hdl.handle.net/10630/24192 UL https://hdl.handle.net/10630/24192 LA eng NO Peláez, J.Á., Rättyä, J. & Wu, F. Integral Operators Induced by Symbols with Non-negative Maclaurin Coefficients Mapping into H∞. J Geom Anal 32, 148 (2022). https://doi.org/10.1007/s12220-022-00888-1 NO Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. Funding for open access charge: Universidad de Málaga / CBUA DS RIUMA. Repositorio Institucional de la Universidad de Málaga RD 19 ene 2026