RT Conference Proceedings T1 Towards Self-Adaptive Software for Wildfire Monitoring with Unmanned Air Vehicles. A1 Vilchez Campillejo, Enrique A1 Troya-Castilla, Javier A1 Cámara-Moreno, Javier K1 Inteligencia artificial K1 Aviones sin piloto K1 Incendios forestales AB Wildfires have evolved significantly over the last decades, burning increasingly large forest areas every year. Smart cyber-physical systems like small Unmanned Air Vehicles (UAVs) can help to monitor, predict, and mitigate wildfires. In this paper, we present an approach to build control software for UAVs that allows autonomous monitoring of wildfires. Our proposal is underpinned by an ensemble of artificial intelligence techniques that include: (i) Recurrent Neural Networks (RNNs) to make local UAV predictions about how the fire will spread over its surrounding area; and (ii) Deep Reinforcement Learning (DRL) to learn policies that will optimize the operation of the UAV team. YR 2023 FD 2023 LK https://hdl.handle.net/10630/27656 UL https://hdl.handle.net/10630/27656 LA eng NO Vílchez, E., Troya, J., Cámara, J.: Towards Self-Adaptive Software for Wildfire Monitoring with Unmanned Air Vehicles. In: Durán Toro, A. (ed.) Actas de las XXVII Jornadas de Ingeniería del Software y Bases de Datos (JISBD 2023). Sistedes (2023). https://hdl.handle.net/11705/JISBD/2023/8176 NO Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. DS RIUMA. Repositorio Institucional de la Universidad de Málaga RD 20 ene 2026