RT Journal Article T1 Major imprint of surface plankton on deep ocean prokaryotic structure and activity. A1 Ruiz-González, Clara A1 Mestre, Mireia A1 Estrada, Marta A1 Sebastián, Marta A1 Salazar, Guillem A1 Agustí, Susana A1 Moreno-Ostos, Enrique A1 Reche, Isabel A1 Álvarez-Salgado, Xosé Antón A1 Morán, Xosé Anxelu G. A1 Duarte, Carlos M. A1 Sala, M. Montserrat A1 Gasol, Josep M. K1 Fitoplancton K1 Ecosistemas marinos K1 Bacterias marinas K1 Comunidades bióticas K1 Procariotas K1 Carbono - Fijación AB Deep ocean microbial communities rely on the organic carbon produced in the sunlit ocean, yet it remains unknown whether surface processes determine the assembly and function of bathypelagic prokaryotes to a larger extent than deep-sea physicochemical conditions. Here, we explored whether variations in surface phytoplankton assemblages across Atlantic, Pacific and Indian ocean stations can explain structural changes in bathypelagic (ca. 4,000 m) free-living and particle-attached prokaryoticcommunities (characterized through 16S rRNA gene sequencing), as well as changes in prokaryotic activity and dissolved organic matter (DOM) quality. We show that the spatial structuring of prokaryotic communities in the bathypelagic strongly followed variations in the abundances of surface dinoflagellates and ciliates, as well as gradients in surface primary productivity, but were less influenced by bathypelagicphysicochemical conditions. Amino acid-like DOM components in the bathypelagic reflected variations of those components in surface waters, and seemed to control bathypelagic prokaryotic activity. The imprint of surface conditions was more evident in bathypelagic than in shallower mesopelagic (200–1,000 m) communities, suggesting a direct connectivity through fast-sinking particles that escape mesopelagictransformations. Finally, we identified a pool of endemic deep-sea prokaryotic taxa (including potentially chemoautotrophic groups) that appear less connected to surface processes than those bathypelagic taxa with a widespread vertical distribution. Our results suggest that surface planktonic communities shape the spatial structure of the bathypelagic microbiome to a larger extent than the local physicochemical environment, likely through determining the nature of the sinking particles and the associatedprokaryotes reaching bathypelagic waters. PB Wiley YR 2020 FD 2020 LK https://hdl.handle.net/10630/40398 UL https://hdl.handle.net/10630/40398 LA eng NO Ruiz-González, C., M. Mestre, M. Estrada, M. Sebastián, G. Salazar, S. Agustí, E. Moreno-Ostos, I. Reche, X.A. Álvarez-Salgado, X.A. G. Morán, C.M. Duarte, M.M. Sala, J.M. Gasol. 2020. Major imprint of surface plankton on deep ocean prokaryotic structure and activity. Molecular Ecology 29:1820–1838. NO https://openpolicyfinder.jisc.ac.uk/id/publication/7104 DS RIUMA. Repositorio Institucional de la Universidad de Málaga RD 19 ene 2026