RT Journal Article T1 A critical analysis of the theoretical framework of the Extreme Learning Machine. A1 Perfilieva, Irina A1 Madrid-Labrador, Nicolás Miguel A1 Ojeda-Aciego, Manuel A1 Artiemjew, Piotr A1 Niemczynowicz, Agnieszka K1 Aprendizaje automático (Inteligencia artificial) K1 Redes neuronales (Informática) K1 Matrices (Matemáticas) AB Despite several successful applications of the Extreme Learning Machine (ELM) as a new neural network training method that combines random selection with deterministic computation, we show that some fundamental principles of ELM lack a rigorous mathematical basis. In particular, we refute the proofs of two fundamental claims and construct datasets that serve as counterexamples to the ELM algorithm. Finally, we provide alternative claims to the basic principles that justify the effectiveness of ELM in some theoretical cases. PB Elsevier YR 2025 FD 2025-01-02 LK https://hdl.handle.net/10630/40247 UL https://hdl.handle.net/10630/40247 LA eng NO Irina Perfilieva, Nicolás Madrid, Manuel Ojeda-Aciego, Piotr Artiemjew, Agnieszka Niemczynowicz: A critical analysis of the theoretical framework of the Extreme Learning Machine. Neurocomputing 621: 129298 (2025) NO https://openpolicyfinder.jisc.ac.uk/id/publication/15862 DS RIUMA. Repositorio Institucional de la Universidad de Málaga RD 19 ene 2026