RT Conference Proceedings T1 Advanced techniques to compute improper integrals using a CAS A1 Aguilera-Venegas, Gabriel A1 Galán-García, José Luis A1 Galán-García, María Ángeles A1 Padilla-Domínguez, Yolanda Carmen A1 Rodríguez-Cielos, Pedro A1 Rodríguez-Cielos, Ricardo K1 Fourier, Transformaciones de K1 Laplace, Transformación de AB Let us consider the following types of improper integrals:$$\int_0^\infty f(t)\:{\rm d}t \qquad ; \qquad \int_{-\infty}^0 f(t)\:{\rm d}t \qquad {\rm and} \qquad \int_{-\infty}^\infty f(t)\:{\rm d}t$$\medskipLet $F$ be an antiderivative of $f$. The basic approach to compute such integrals involves the following computations:\medskip\begin{eqnarray*}\int_0^\infty f(t)\:{\rm d}t & = & \lim_{m\to\infty} \int_0^m f(t)\:{\rm d}t = \lim_{m\to\infty} \big(F(m)-F(0)\big) \\ \\\int_{-\infty}^0 f(t)\:{\rm d}t & = & \lim_{m\to-\infty} \int_m^0 f(t)\:{\rm d}t = \lim_{m\to-\infty} \big(F(0)-F(m)\big) \\ \\\int_{-\infty}^\infty f(t)\:{\rm d}t & = & \int_{-\infty}^0 f(t)\:{\rm d}t + \int_0^\infty f(t)\:{\rm d}t \qquad \mbox{or, in case of convergence,} \\ \\\int_{-\infty}^\infty f(t)\:{\rm d}t & = & \lim_{m\to\infty} \int_{-m}^m f(t)\:{\rm d}t = \lim_{m\to\infty} \big(F(m)-F(-m)\big) \qquad \mbox{(Cauchy principal value)}\end{eqnarray*}\medskip\noindent But, what happens if an antiderivative $F$ for $f$ or the above limits do not exist?\medskip\noindent For example, for \quad $\displaystyle\int_0^\infty\frac{{\rm sin}(at)}{t}\:{\rm d}t$ \quad ; \quad $\displaystyle\int_0^\infty\frac{{\rm cos}(at)-{\rm cos}(bt)}{t}\:{\rm d}t$ \quad {\rm or} \quad $\displaystyle\int_{-\infty}^\infty\frac{{\rm cos}(at)}{t^2+1}\:{\rm d}t$ \qquad the antiderivatives can not be computed. Hence, the above procedures cannot be used for these examples.\medskipIn this work we will deal with advance techniques to compute this kind of improper integrals using a {\sc Cas}. Laplace and Fourier transforms or Residue Theorem in Complex Analysis are some advance techniques which can be used for this matter.\medskipWe will introduce the file \textbf{\tt ImproperIntegrals.mth}, developed in {\sc Derive} 6, which deals with such computations.\medskipSome {\sc Cas} use different rules for computing integrations. For example {\sc Rubi} system, a {\bf ru}le-{\bf b}ased {\bf i}ntegrator developed by Albert Rich (see {\tt http://www.apmaths.uwo.ca/\~{ }arich/}), is a very powerful system for computing integrals using rules. We will be able to develop new rules schemes for some improper integrals using {\tt ImproperIntegrals.mth}. These new rules can extend the types of improper integrals that a {\sc Cas} can compute. YR 2014 FD 2014-07-16 LK http://hdl.handle.net/10630/7850 UL http://hdl.handle.net/10630/7850 LA eng NO Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. DS RIUMA. Repositorio Institucional de la Universidad de Málaga RD 24 ene 2026