RT Conference Proceedings T1 Detección de participantes del tráfico en entornos urbanos sobre imágenes RGB y nubes de puntos 3D. A1 Montenegro, Jorge A1 García-Guillén, Alejandro A1 Castro Payán, Francisco Manuel A1 Martínez-Rodríguez, Jorge Luis A1 Morales-Rodríguez, Jesús K1 Vehículos autodirigidos K1 Detectores K1 Redes neuronales (Informática) K1 Tráfico - Regulación - Métodos de simulación AB This article proposes the development of a test environment for the detection of traffic participants in urban environments using neural networks based on the processing of data from vehicle sensors: an RGB camera and a 3D LiDAR sensor. It presents the integration of the realistic simulator CARLA (Car Learning to Act), which allows the detailed recreation of complex urban scenarios, together with ROS2 (Robot Operating System), which is a framework for the development of robotic applications. Specifically, for the case of RGB images, the performance of the CNN (Convolutional Neural Network) YOLOv8 and the DETR (Detection Transformer) is qualitatively evaluated. Similarly, for the detection of traffic participants in point clouds, the PV- RCNN (PointVoxel Regional based Convolutional Neural Network) and its evolution Part-A2-Net are analysed. PB Comité Español de Automática YR 2024 FD 2024 LK https://hdl.handle.net/10630/33043 UL https://hdl.handle.net/10630/33043 LA spa NO Montenegro, J., Garc´ıa-Guillen, ´ A., Castro, F.M., Mart´ınez, J.L., Morales, J. 2024. Detection of Traffic Participants in Urban Environments from RGB images and 3D point clouds Jornadas de Autom´atica, 45. https://doi.org/10.17979/ja-cea.2024.45.10870 NO Proyecto de Investigación de Excelencia de la Junta de Andalucía PREMOVE (ProyExcel 00684). DS RIUMA. Repositorio Institucional de la Universidad de Málaga RD 20 ene 2026