RT Journal Article T1 A Hankel matrix acting on spaces of analytic functions. A1 Girela-Álvarez, Daniel A1 Merchán-Álvarez, Noel K1 Hankel, Operadores de K1 Hilbert, Operadores en espacio de K1 Álgebra lineal AB If μ is a positive Borel measure on the interval [0, 1) we let H_μ be the Hankel matrix { μ_{n,k} }_{n,k} with entries μ_{n,k} =μ_{n+k}, where, for μ_n denotes the moment of order n of μ. This matrix induces formally an operator on the space of all analytic functions in the unit disc D. This is a natural generalization of the classical Hilbert operator. In this paper we improve the results obtained in some recent papers concerning the action of the operators H_μ on Hardy spaces and on Möbius invariant spaces. PB Springer YR 2017 FD 2017-11-02 LK https://hdl.handle.net/10630/29152 UL https://hdl.handle.net/10630/29152 LA eng NO Girela, D., Merchán, N. A Hankel Matrix Acting on Spaces of Analytic Functions. Integr. Equ. Oper. Theory 89, 581–594 (2017). https://doi.org/10.1007/s00020-017-2409-3 NO Política de acceso abierto tomada de: https://v2.sherpa.ac.uk/id/publication/15630?template=romeo NO - Proyecto del Ministerio de Economía y Competitividad MTM2014-52865-P.- Proyecto de la Junta de Andalucía FQM-210.- Ayuda FPU del Ministerio de Educación, Cultura y Deporte FPU2013/01478. DS RIUMA. Repositorio Institucional de la Universidad de Málaga RD 19 ene 2026