RT Journal Article T1 On the vanishing of the hyperdeterminant under certain symmetry conditions A1 Arrondo, Enrique A1 Tocino-Sánchez, Alicia K1 Schur, Funciones de AB Given a vector space V over a field K whose characteris tic is coprime with d!, let us decompose the vector spaof multilinear forms V ∗ ⊗ (d) ... ⊗ V ∗ = λ Wλ(X, K) ac cording to the different partitions λ of d, i.e. the differentrepresentations of Sd. In this paper we first give a decom position W(d−1,1)(V, K) = di=1 Wi(d−1,1)(V, K). We finalprove the vanishing of the hyperdeterminant of any F ∈( λ =(d),(d−1,1)) ⊕ Wi(d−1,1)(V, K). This improves the resultin [10] and [1], where the same result was proved without thisnew last summand. PB Elsevier YR 2024 FD 2024 LK https://hdl.handle.net/10630/35601 UL https://hdl.handle.net/10630/35601 LA eng NO Enrique Arrondo, Alicia Tocino, On the vanishing of the hyperdeterminant under certain symmetry conditions, Journal of Algebra, Volume 666, 2025, Pages 269-278, ISSN 0021-8693, https://doi.org/10.1016/j.jalgebra.2024.11.018 NO Funding for open access charge: Universidad de Málaga / CBUA .The first author is supported by the Spanish Ministerio de Ciencia e Innovación through the projePID2021-124440NB. The second author is supported by the Junta de Andalucía through the project FQM 336 with FEDER funds and by Universidad de Málaga. DS RIUMA. Repositorio Institucional de la Universidad de Málaga RD 19 ene 2026